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1 Introduction

This deliverable reports on the final version of the DARKO mapping system, including
algorithms and software that have been developed, validated, and integrated on the
DARKO robot platforms as of Month 48 (December 2024), as well as an outlook towards
ongoing research in the final months of the project.

The overall objective of WP3 is to work towards hands-off, failure-aware construction
of rich map representations beyond mere geometry. This goal maps to DARKO Objective 3
(efficient deployment) and Objective 2 (human-robot co-production).

The mapping-related methods reported in this deliverable comprise novel lidar-based
and RGB/D-based methods for constructing and localizing in 3D navigation maps (T3.1),
baseline software for merging lidar data with floor-plan line drawings (T3.2), creating and
using several map of dynamics representations (T3.3), as well as methods for constructing
“reliability-aware maps ”, including reference-free map quality assessment and localization
risk maps for anticipating localization inaccuracies (T3.4).

2 Efficient mapping (T3.1)

2.1 Baseline lidar mapping and localization

The baseline mapping and localization stack used by the DARKO robot uses a traditional
graph-based simultaneous localisation and mapping (SLAM) method [1, 2] based on
normal distributions transform (NDT) occupancy map (NDT-OM) sub-maps [3]. For
localizing in the NDT-OM map graph, we use a graph-aware version of NDT Monte Carlo
localisation (NDT-MCL) [4]. The output of the baseline mapping system is a 3D NDT-OM
map (for localization), a 3D point cloud map (mainly for visualization), and a 2D grid
map that can be easily integrated with the WP6 motion planners.

This software has been used for essential mapping and localization in the integrated
system that has been demonstrated in Milestones 1–3. The example output can be seen in
Figure 1.

2.2 Efficient Lidar Mapping

In contrast to the traditional explicit map representations described in Section 2.1, the
past few years have seen an enormous interest in neural and implicit map representations,
which allow for fully continuous representations. However, achieving accurate, detailed
surface reconstruction at a low memory cost is difficult, especially for large-scale scenes.

As part of DARKO’s WP3, we have devised a neural 3D surface reconstruction method
called 3QFP [5]. We propose a sparse data structure called, Tri-Quadtrees, which represents
the environment using learnable features stored in three planar quadtree projections. The
learned features are then decoded into signed distance values through a small multi-layer
perception. Compared to existing methods, we demonstrate that this approach facilitates
smoother reconstruction with a higher completion ratio with fewer holes.

The 3QFP method learns a continuous signed distance function (SDF) representation
of the environment, given lidar scans and known poses. Specifically, the world coordinate
pi ∈ R3 is mapped into an SDF value si ∈ R. As shown in Figure 2, our neural implicit
representation is composed of two components: the learnable features stored in the
quadtree nodes and a globally shared MLP to predict the SDF value. The features and the
network parameters are learned during test time by using direct lidar measurement to
supervise network predictions.

3
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Figure 1: Geometric 2D and 3D maps from Milestone 3 at the Deutsches Museum in Munich,
created with the DARKO prototype mapping system from T3.1. Left to right: 3D point cloud
map (for visualization), 3D NDT-OM map (for localization), 2D occupancy grid (for motion
planning).

Figure 2: Overview of 3QFP [5]. We represent the scene with three planar quadtreesM ℓ
i ,

i ∈ {X Z , Y Z , X Y }, where ℓ represents the quadtree depth. We store features in the deepest H
levels of quadtree resolution. When querying for a point p, we project it onto planar quadtrees
to identify the node containing p at level ℓ. The feature of p is then calculated by bilinear
interpolation based on the queried location and vertex features. We add features at the same
level and concatenate among different levels. Concatenated with the positional encoding γ(p),
p ’s feature (Φ(p)) is fed into a small MLP (FΘ) to predict the SDF value. The learnable features
stored in the quadtree nodes and the network parameters are learned by test-time optimization
using the loss function Lbce.

4
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(a) VDBFusion (b) SHINE-Mapping (c) Ours

Figure 3: Qualitative visualization of the map quality on the MaiCity dataset using every
6th frame. The first row depicts the difference between the dense ground truth point cloud
and the reconstructed mesh; the ground truth points with an error of more than 0.1 m are
highlighted in orange. The second row shows zoomed-in images of the dashed areas (indicated
in the top-right image). When inputs are sparse (e.g., every 6th frame in this case), our method
obtains visibly smoother results.

As shown in the quantitative experiments in Table 1, our method is more memory
efficient than the previous state-of-the-art implicit representation [6], while still achieving
a higher completion ratio than explicit representation methods such as VDBFusion [7]. The
qualitative results shown in Figure 3 demonstrate that our method is capable of producing
smoother reconstructions and achieves good hole filling when inputs are sparse.

Table 1: Quantitative evaluation of the reconstruction quality on the MaiCity and
NewerCollege datasets with dense inputs. We report the Completion (Comp.), Accuracy (Acc.),
Completion Ratio (Comp.Ratio) and Accuracy Ratio (Acc.Ratio) with a threshold of 0.1 m for
MaiCity and 0.2 m for NewerCollege. We also report the number of learnable parameters
for neural implicit representation methods. Bold fonts represent the best results. Our method
achieves a significantly higher completion ratio than VDBFusion with fewer parameters than
SHINE-Mapping. (↓: lower better; ↑: higher better.)

Dataset Method #Param ↓ Comp.[cm] ↓ Acc.[cm] ↓ Comp.Ratio[%]↑ Acc.Ratio[%]↑

MaiCity
VDBFusion [7] \ 27.33 1.36 78.12 99.13

SHINE-Mapping [6] 4.53× 106 3.34 1.66 95.43 97.09
Ours 1.27× 106 2.68 1.52 97.27 97.60

NewerCollege
VDBFusion \ 13.20 5.50 91.51 98.10

SHINE-Mapping 1.14× 107 9.55 7.60 94.58 91.37
Ours 1.60× 106 9.68 6.72 94.10 93.69

2.3 High-Fidelity SLAM with 3DGS

In addition to accurate geometric reconstruction as described above, we have also explored
how to reconstruct the scene with high fidelity appearance, aiming to enhance localization
and enable additional applications based on rendering novel RGB views from unseen
viewpoints [8].

In this work [8], we use 3D Gaussians as scene representation primitives to provide
metrically accurate pose tracking and visually realistic reconstruction. Our two main
contributions are (1) a Gaussian densification strategy based on the rendering loss to

5
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Figure 4: Overview of the mapping and tracking method with 3D Gaussian splats, developed in
WP3. Our method takes RGBD frames as inputs. During mapping, when given a posed RGBD
frame, we first render the opacity image, color image, and depth image. Then, we compare
the rendered images with the given (“ground truth”) input frames to densify the existing map.
During tracking, we minimize the color and depth re-rendering loss to optimize the camera
pose.

map unobserved areas and refine reobserved areas and (2) regularization parameters to
alleviate the “forgetting” problem that otherwise happens during continuous mapping –
where parameters tend to overfit the latest frame and result in decreasing rendering quality
for previous frames (illustrated in Figure 5). Both mapping and tracking are performed
with Gaussian parameters to minimize re-rendering loss in a differentiable way.

Compared to recent neural and concurrently developed Gaussian splitting RGBD SLAM
baselines, our method achieves state-of-the-art benchmark results on the synthetic dataset
Replica and competitive results on the real-world dataset TUM.

Figure 4 shows an overview of our method. Given RGBD frames and estimated camera
poses, we update the map by comparing the rendered images and the ground truth to
identify unobserved regions and areas requiring refinement. Regularization terms are
incorporated into the optimization process to mitigate the issue of forgetting during
mapping. For tracking, we track the camera pose in the Gaussian map by minimizing color
and depth re-rendering loss.

In the quantitative experiment Table 2, we show that our method achieves better
reconstruction results than current state-of-the-art neural implicit SLAM methods and the
concurrent work using Gaussian splatting. Further results are available in the published
paper, Sun et al. [8].

3 Heterogeneous map merging (T3.2)

Task T3.2 was intended to study methods for exploiting rough prior maps such as floor
plans for assisted SLAM, mutual map improvement, and information transfer between
map representations. We have ported a previous implementation for heterogeneous map
merging called auto-complete graph (ACG) [15] and deployed it on the DARKO robot
platform in particular for Milestone 2.

Figure 6 shows examples of using ACG. Alternatively to the “uninformed” SLAM system
from T3.1, when using ACG for SLAM, the robot is localized with NDT-MCL using a 2D
NDT map extracted from the current shape of the prior map, while a sensor-based NDT
submap is being created. The corners and walls extracted from the sensor-based map

6
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Figure 5: Illustration of the forgetting problem in the context of continual mapping based
on Gaussians. The Gaussians colored yellow are shared by camera0 and camera1. However,
these Gaussians tend to be optimized to overfit the latest frame camera1, resulting in a drop in
reconstruction quality for previous frames.

Table 2: Map rendering performance with Gaussian splatting on the Replica [9] dataset. The

best results are highlighted by first , second , and third . ↑ means larger is better while ↓
means smaller is better. Our method [8] achieves the best results in most metrics.

Method Primitives Metric Room0 Room1 Room2 office0 office1 office2 office3 office4 Avg.

NICE-SLAM [10]

Neural
PSNR [dB] ↑ 22.12 22.47 24.52 29.07 30.34 19.66 22.23 24.94 24.42

+ SSIM ↑ 0.69 0.76 0.81 0.87 0.89 0.80 0.80 0.86 0.81

Voxels
LPIPS ↓ 0.33 0.27 0.21 0.23 0.18 0.23 0.21 0.20 0.23
ATE RMSE [cm] ↓ 0.97 1.31 1.07 0.88 1.00 1.06 1.10 1.13 10.6
Depth L1 [cm] ↓ 1.81 1.44 2.04 1.39 1.76 8.33 4.99 2.01 2.97

ESLAM [11]

Neural
PSNR [dB] ↑ 25.25 25.31 28.09 30.33 27.04 27.99 29.27 29.15 27.80

+ SSIM ↑ 0.87 0.25 0.93 0.93 0.91 0.94 0.95 0.95 0.92

Feature Plane
LPIPS ↓ 0.32 0.30 0.25 0.21 0.25 0.24 0.19 0.21 0.25
ATE RMSE [cm] ↓ 0.71 0.70 0.52 0.57 0.55 0.58 0.72 0.63 0.63
Depth L1 [cm] ↓ 0.97 1.07 1.28 0.86 1.26 1.71 1.43 1.06 1.18

Point-SLAM [12]

Neural
PSNR [dB] ↑ 32.40 34.08 35.50 38.26 39.16 33.99 33.48 33.49 35.17

+ SSIM ↑ 0.97 0.98 0.98 0.98 0.99 0.96 0.96 0.98 0.97

Point Cloud
LPIPS ↓ 0.11 0.12 0.11 0.10 0.12 0.16 0.13 0.14 0.12
ATE RMSE [cm] ↓ 0.61 0.41 0.37 0.38 0.48 0.54 0.69 0.72 0.52
Depth L1 [cm] ↓ 0.53 0.22 0.46 0.30 0.57 0.49 0.51 0.46 0.44

GS-SLAM [13]

PSNR [dB] ↑ 31.56 32.86 32.59 38.70 41.17 32.36 32.03 32.92 34.27

Parameterized
SSIM ↑ 0.96 0.97 0.97 0.98 0.99 0.97 0.97 0.96 0.97

Gaussians
LPIPS ↓ 0.09 0.07 0.09 0.05 0.03 0.09 0.11 0.11 0.08
ATE RMSE [cm] ↓ 0.48 0.53 0.33 0.52 0.41 0.59 0.46 0.70 0.50
Depth L1 [cm] 1.31 0.82 1.26 0.81 0.96 1.41 1.53 1.08 1.16

SplaTAM [14]

PSNR [dB] ↑ 32.86 33.89 35.25 38.26 39.17 31.97 29.70 31.81 34.11

Parameterized
SSIM ↑ 0.98 0.97 0.98 0.98 0.98 0.97 0.95 0.95 0.97

Gaussians
LPIPS ↓ 0.07 0.10 0.08 0.09 0.09 0.10 0.12 0.15 0.10
ATE RMSE [cm] ↓ 0.31 0.40 0.29 0.47 0.27 0.29 0.32 0.55 0.36
Depth L1 [cm] – – – – – – – – –

Ours

PSNR [dB] ↑ 33.06 35.74 37.21 41.12 41.11 33.56 33.21 34.48 36.19

Parameterized
SSIM ↑ 0.98 0.98 0.99 0.99 0.99 0.98 0.97 0.98 0.98

Gaussians
LPIPS ↓ 0.05 0.05 0.04 0.03 0.03 0.07 0.08 0.08 0.05
ATE RMSE [cm] ↓ 0.19 0.34 0.16 0.21 0.26 0.23 0.21 0.38 0.25
Depth L1 [cm] ↓ 0.39 0.34 0.33 0.29 0.26 0.67 0.93 0.97 0.52
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(a) The prior map (in this case extracted from a crude line drawing) is shown with black lines (corners
as brown squares). The current live sensor data (2D lidar) is shown with red points. The particle cloud,
used in a Monte Carlo localisation implementation that localizes the sensor data against the prior map, is
shown as red arrows.

(b) Running ACG for heterogeneous map merging at Milestone 2 at ARENA2036. Left: floor plan used as
input. Right: visualization of the mapping. The wall outline extracted from the left image is shown with
black lines. Cyan points show a 2D rendering of the lidar-based map as it would look like without merging
with the floor plan. Purple points show the corrected map. Blue lines denote edges in the factor graph that
connect robot poses to detected corners.

Figure 6: The auto-complete graph (ACG) as integrated in the DARKO system.

are associated with the corners and walls prior to the edges in the ACG, and the graph
is repeatedly optimized with a set of two robust back-ends in tandem (a Huber kernel
followed by dynamic covariance scaling [16]), in order to deal with large numbers of false
corner associations. One problem with the current implementation of the system, which
is also evident in Figure 6, is that the line extractor is rather crude and the prior (black)
looks distorted, which makes the mutual map correction difficult.

Ultimately, the attention of WP3 focused more on the remaining tasks T3.1, T3.3, T3.4.

4 Maps of dynamics (T3.3)

Maps of dynamics (MoDs) are representations of motion patterns learned from prior
observations. Within DARKO we have developed novel MoD representations and, in
particular, studied how MoDs can be exploited for downstream tasks such as human-aware
robot navigation and long-term human motion prediction.

4.1 The CLiFF-map

The back bone of our work on MoDs has been the CLiFF-map representation [17]. CLiFF-
maps represent speed and direction jointly as velocity V= [θ ,ρ]T using direction θ and
speed ρ, where ρ ∈ R+, θ ∈ [0, 2π). For each of a set of discrete locations in a map, CLiFF

8
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Figure 7: Online update results for a representative toy example; compared with
using only new observations (Interval) and using all observations (History) to build
the model. The top row shows raw observations for each of the eight directions
(0◦, 45◦, 90◦, 135◦, 180◦, 225◦, 270◦, 315◦), provided in each iteration k. Blue arrows depict the
mean vectors of a CLiFF Gaussian mixture model, with transparency indicating the component
weights. Three modeling approaches are compared: the second row shows models built using
only observations from the current iteration k; the third row shows models built with cumula-
tive observations from iteration 1 to k, which are over generalized and fail to prioritize recent
observations; the fourth row shows the proposed online-update models, which incorporate
new data while retaining relevant historical patterns, offering a dynamic representation of the
motion pattern over time.

fits a semi-wrapped Gaussian mixture model (GMM) (i. e., a cylindrical distribution) to
motion observations within a certain radius. The GMM is estimated using the mean shift
algorithm and expecation maximization, and as such is typically computed offline given
a batch of measurements. Therefore it is most well suited to learning maps of flow in
environments where the flow is stationary, i.e., not assumed to change over time.

4.2 Online updates of CLiFF-map

In DARKO, we have proposed a method to update a CLiFF map of dynamics in a life-
long operating robot, by using a variation of the stochastic expectation maximization
algorithm [18]. As new observations are collected, our goal is to update the existing
representation to effectively and accurately integrate the new information. At the same
time, the robot should not immediately dismiss the previously learned patterns without
the need to store the entire historical dataset.

Our proposed online update method maintains the probabilistic representation in each
observed location, updating parameters by continuously tracking sufficient statistics. More
details are available in our paper, Zhu et al. [19].

As shown in Figure 7, our method not only ensures that the model remains adaptively
accurate in reflecting the most recent human motion but also maintains consistency with
historical data, thereby preserving a comprehensive understanding of the environment
over time. In experiments on both a synthetic dataset and the real-world ATC [20] dataset,
we show that our method is able to quickly recognize changes in environments with sparse
and dense motion flows, while being significantly faster than baseline methods, as shown
in Figure 8.

4.3 CLiFF-LHMP

Long-term human motion prediction (LHMP) is important for mobile service robots and
intelligent vehicles to operate safely and smoothly around people. The more accurate

9
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Figure 8: Running time of each iteration when building MoDs from the ATC dataset (left)
and den520d dataset (right). In both datasets, the online model shows significantly reduced
runtime compared with history and interval models.

(a) (b) (c) (d)
(a) (b) (c) (d)

Figure 9: In CLiFF-LHMP, sampling a direction from the CLiFF-map has four steps. (a) CLiFF-
map. The location to sample from is marked with an orange arrow. (b) Selection of SWGMMs
in the CLiFF-map: The red circle contains all SWGMMs within a set distance from the sampling
location. From these SWGMMs, the SWGMM with the highest motion ratio is selected (marked
with a blue circle). (c) The SWGMM distribution in the selected location wrapped on a unit
cylinder. The speed is represented by the position along the ρ axis and the direction is θ .
The probability is represented by the distance from the surface of the cylinder. A velocity
vector (marked with a red arrow) is sampled from this SWGMM. (d) The direction value of
the sampled velocity is shown in the sampled direction and marked with an orange circle.

predictions are, particularly over extended periods of time, the better a system can, e.g.,
assess collision risks and plan ahead. However, accurate prediction of human trajectories is
challenging due to complex factors, including, for example, social norms and environmental
conditions. The influence of such factors can be captured through MoDs, which encode
spatial motion patterns learned from (possibly scattered and partial) past observations
of motion in the environment and which can be used for data-efficient, interpretable
motion prediction. We propose to exploit maps of dynamics for long-term human motion
prediction (LHMP).

In DARKO, we have proposed CLiFF-LHMP [21]. The motion patterns represented in
a CLiFF-map implicitly avoid collisions with static obstacles and follow the topological
structure of the environment, e.g., capturing the dynamic flow through a hall into a corridor
(see Figure 10). We bias a constant velocity prediction with samples from the CLiFF-map to
generate multi-modal trajectory predictions. The sampling process is described in Figure 9.
The algorithm of CLiFF-LHMP is presented in Algorithm 1.

Here we report evaluation of the predictive performance using two real-world datasets:
ATC [20] and THÖR [22]. The baseline prediction approaches include IS-MDP [23] and
the constant velocity predictor [24, 25]. Figure 11 shows that CLiFF-LHMP is 45 % more
accurate than the baseline at 50 s, with average displacement error (ADE) below 5 m
up to 50 s. In contrast to prior art in long-term environment-aware motion prediction

10
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Algorithm 1: CLiFF-LHMP
Input: H , x t0

, yt0
,Ξ

Output: T
1 T = {}
2 ρobs,θobs← getObservedVelocity(H )
3 st0

= (x t0
, yt0

,ρobs,θobs)
4 for t = t0 + 1, ..., t0 + Tp do
5 x t , yt ← getNewPosition(st−1)
6 θs ← sampleDirectionFromCLiFFmap(x t , yt ,Ξ)
7 (ρt , θt)← predictVelocity(θs, ρt−1, θt−1)
8 st ← (x t , yt ,ρt ,θt)
9 T ← T ∪ st

10 return T
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Figure 10: Long-term (50 s) motion prediction result obtained with CLiFF-LHMP for one person
in the ATC dataset. Red line: ground truth trajectory. Green line: observed trajectory. Blue
lines: predicted trajectories. The CLiFF-map is shown with colored arrows.
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Figure 11: Average displacement error (ADE) and final displacement error (mean ± one std.
dev.) in the ATC dataset with prediction horizon 1–50 s.
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[23], CLiFF-LHMP method does not make any assumptions on the optimality of human
motion and instead generalizes the features of human-space interactions from the learned
MoD. Furthermore, our method does not require a list of goals in the environment as
input, in contrast to prior planning-based prediction methods. Finally, our method can
flexibly estimate the variable time end-points of human motion, predicting both short-
and long-term trajectories, in contrast to the prior art which always predicts up to a fixed
prediction horizon.

We have also demonstrated a class-conditioned application of CLiFF-LHMP, where
different CLiFF-maps are constructed for people with different roles, and show that doing
so further increases prediction performance (Almeida et al. [26]).

4.4 LaCE-LHMP

Detecting and identifying abnormal trajectories is a major challenge in motion modeling
and prediction. Existing methods typically identify abnormal motions by comparing them
to expected behaviours [27] or measuring deviations from normal motions [28]. However,
these approaches require labelled data for supervised learning.

To address the limitations of prior work, especially regarding accuracy and sensitivity to
anomalies in long-term prediction, we propose the Laminar Component Enhanced LHMP
approach (LaCE-LHMP) [29]. This approach is inspired by data-driven airflow modeling,
which estimates laminar and turbulent flow components and uses predominantly the
laminar components to make flow predictions. Based on the hypothesis that human
trajectory patterns also manifest laminar flow (that represents predictable motion) and
turbulent flow components (that reflect more unpredictable and arbitrary motion), LaCE-
LHMP extracts the laminar patterns in human dynamics and uses them for human motion
prediction.

The LaCE-LHMP approach consists of training and prediction phases, as shown in
Figure 12. The training phase first extracts the underlying laminar component from
the observed trajectories and learns an MoD, expressed through a set of probabilistic
representations of the target area, i.e., the LaCE model. In the prediction phase, both the
observed recent trajectory sequence and the learned LaCE model influence the predicted
trajectory, depending on the degree of local laminar dominance. In order to select the
contributions from both factors depending on the local situation, we propose an adaptive
sampling process. Once a likely direction is sampled, the current state can be propagated
to predict sequences of future states.

We compare the performance of our approach with three baselines: CLiFF-LHMP,
Trajectron++ [30] and a constant velocity model, using the ATC dataset. Trajectron++
(T++) represents a state-of-the-art approach employing a graph-structured generative
neural network based on a conditional-variational autoencoder.

4.5 Flow-aware motion planning

Furthermore, we have studied the effect of different MoD-aware sampling methods for
motion planning on MoDs. A manuscript describing this study is currently under review
for the Robotics and Autonomous Systems journal.

We have proposed improvements to the existing Dijkstra-graph sampling heuristic that
is used in the CLiFF-RRT* and DTC-RRT* [31] methods; and we show that an ellipsoidal
heuristic, inspired by Gammell et al. [32], can also be used with maps of dynamics, and
propose two novel sampling heuristics.

We have experimentally validate several sampling heuristics through a comprehensive
evaluation (> 37 000 runs) of their performance on real-world data from densely populated
environments. Our results show that the proposed sampling heuristics help both to
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Figure 12: Diagram illustrating the training and prediction phases of the LaCE-LHMP approach.
In the training phase, observed trajectories (a) are used. Velocity observations, which are
depicted in (c) for (x , y) and (d) for ω-ν distribution, are clustered using K-means into K
clusters, shown in (b). From each cluster’s joint ω-ν distribution, a discrete ω-ν histogram Γ R

is estimated to extract the laminar component Γ L , as shown in (e). The directions with the
highest likelihood in Γ L are represented by colored arrows in the LaCE model (f). The LaCE
model is then utilized for prediction.
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Figure 13: ADE/FDE (top) and top-k ADE/FDE (bottom) in the ATC dataset with a prediction
horizon 1–20 s. Predictions with the LaCE model are more accurate during the whole considered
period, as indicated by lower ADE/FDE values, which signify improved performance.
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find solutions and reach low-cost solutions quickly. In particular, we devise a hybrid
sampling heuristic that finds solutions quickly, especially in constrained areas where
uninformed sampling struggles: hybrid sampling heuristics achieve 90% success rate
after 16 s compared to 64 s for uniform sampling. This hybrid method combines Dijkstra
graph search, intensity-importance sampling, and the dynamics-aware ellipsoidal heuristic
(delimiting the sampling region based on a theoretical upper bound of human-aware path
cost).

5 Reliability-aware mapping and safe localization (T3.4)

5.1 Registration quality assessment

Scan registration is a central part of both the mapping and the localization pipelines
from T3.1. As such, automatic assessment of the result of scan matching is important
for detecting and mitigating errors and improving mapping and localization. We have
reported our registration quality assessment CorAl [33] in D3.2 and briefly cover it here
for completeness.

CorAl computes the average differential entropy in two point clouds, comparing the
local point entropy in each point cloud separately to the union of the point clouds. A key
idea is to estimate the entropy inherent in the scene from the entropy in the separate
point clouds, which enables CorAl to accurately assess quality in a range of different
environments. The decision boundaries between aligned vs non-aligned point clouds can
be learned in a self-supervised fashion from accurately aligned scans with poses.

5.2 Localisation quality assessment

Precise localization is key to most mobile robot systems, not least those deployed in
industrial settings. However, even state-of-the-art lidar-based systems may fail or lose
accuracy, particularly in feature-sparse environments (e. g., fully stacked warehouse aisles
or transport corridors).

Our aim is to be able to predict localization risk (i.e., the risk of generating inaccurate
pose estimates) and account for it by taking preemptive measures, e.g., such that a planner
can generate “risk-aware” paths that take both the risk of inaccurate localization and the
path length into account.

In D3.2, we reported on alignability maps [34], meant to associate a cost to map
areas that lack features helpful for precise scan alignment. In contrast to CorAl (sec-
tion 5.1) which assesses pairwise alignment “after the fact”, alignability maps are helpful
for proactively avoiding inaccurate localization.

An alignability map, in our case, is a 2D grid map in which each cell represents the
expected alignability that can be obtained from different scans within that area. Our
quantitative experiments [34] have shown that alignability can be used as an indicator of
localization error and we have validated, with Granger causality tests, that it also serves
to anticipate the occurrence of errors. These results were covered in D3.2.

New in the final implementation of localization risk maps is a second layer that
quantifies the expected level of dynamics in the map, as areas with many changes also
pose a risk of inaccurate localization. This work is about to be submitted for a journal
publication, but we will provide a brief overview in this deliverable.

We quantify dynamics in this work by relying on the independent Markov chain
approach (iMac) [35], although our implementation differs in some aspects. The iMac
approach is based on an occupancy grid map representation, and it considers each cell as
an independent Markov chain with two states: occupied or free. This is aimed at modeling
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Figure 14: An example of a Localization Risk Map (LRM) from a warehouse environment.
Left: alignability layer LA. Right: dynamics layer LD. Red values indicate higher risk (lower
alignability, higher dynamics).

dynamics in an environment by quantifying the expected amount of transitions between
states that take place in a particular cell. The transition probabilities for each Markov chain
are defined on the expected values of two different Poisson processes, one that models the
probability of a cell changing its state from free to occupied, and another one that models
the probability of a cell changing its state from occupied to free.

Figure 14 shows an example of a localization risk map from a warehouse environment,
showing the alignability and dynamics layers.

We have also introduced a novel probabilistic model in the form of a Bayesian network
that enables the prediction of localization errors given the conditions of the environment.
We have opted for the use of Bayesian networks since they are grounded on a rigorous
mathematical framework that allows for a compact and intuitive representation of expert
knowledge and enables to perform deductions on such knowledge while considering the
uncertainty of the domain. The model proposed in this work is a Conditional Linear-
Gaussian (CLG) Bayesian network, which includes both discrete and continuous random
variables. The proposed CLG Bayesian network structure is depicted in Figure 15, which
captures the dependencies among the random variables considered. Alignability and
dynamics influence localization error. However, these two variables do not depend on each
other. Furthermore, it is reasonable to state that the initial error and the traveled distance
do not rely on each other either. The error obtained at the end of a given path may change
depending on the initial one, even for the same environmental conditions (e. g., a severe
initial error might not be possible to correct even with favorable conditions.) Therefore,
if available, an estimate of the initial error can also be provided as input for the model.
The model in Figure 15 can, after training on a set of trajectories with known localization
error, be used to predict the localization risk for a given path.

Our preliminary results indicate that travel distance is an important indicator of
localization risk but including information from the alignability and dynamics map layers
over the path further decreases the difference between the mean and variance of the
estimated localization risk and the mean and variance of the actual one.

5.3 Map quality assessment

Occupancy grid maps are widely used in the robotics landscape, including DARKO, and
offer a convenient way to leverage image-based learning methods.In occupancy grid maps,
regions can misrepresent the environment, for example, where a wall is too thick or regions
that are only partially explored and the map is incomplete in those areas. In practice,
maps are usually assessed qualitatively by a human expert, but these assessments are not
easily reproducible and tend to vary significantly between people. Furthermore, assessing
all of the regions of a map by a human is a time-consuming task. With this variability in
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Figure 15: Graph structure of the Conditional Linear-Gaussian (CLG) Bayesian network
proposed for the prediction of localization risk. The squared nodes represent discrete random
variables while the round one represents a continuous random variable.

mind, a data-driven method is chosen to limit potential sources of errors and ensure a
reproducible and repeatable process for mapping quality assessment.

We contribute to robot introspection through self-assessment of map quality, using
only a given map as input, to be independent of the underlying mapping algorithm.
Current methods for map quality assessment rely on ground truth or labeled information
for training classifiers, both of which can be difficult to obtain. We instead propose a
self-supervised learning approach to map quality assessment of 2D occupancy grid maps,
which identifies regions of a map that require further investigation. Errors may manifest
in a map in different ways. For instance, local misregistration often appears as doubled
or slightly bent walls. Errors due to faulty loop closure may appear as overlapping map
segments. More subtly, errors due to sparse coverage may manifest as poorly reconstructed
or partially missing obstacles. Other errors would include remnants of moving obstacles
and clutter that were not properly cleared from the map.

As described in D3.2, our proposed approach uses a variational autoencoder (VAE) to
learn the encoding of maps in an unsupervised way. An autoencoder trained on patches
of the map should converge on an encoding that captures the majority of the map and
represents the environment accurately, and the encoding will poorly represent the poor
sections. We can then analyze the reconstruction loss of a patch by comparing the input
patch cell values with those generated using the encoder. Cell values with a higher
reconstruction loss should then correspond to regions with potential map errors.

The inputs to the VAE are map patches, P, extracted from the occupancy grid map.
The objective of the autoencoder is to minimize the reconstruction error and match the
latent space prior p(z) by jointly optimizing the generative parameters θ and embedding
parameters φ. The encoder network maps from patches to Gaussians in the latent space
qφ(z | P) = N (µφ(P), Sφ(P)) and the decoder network maps from latent space posi-
tions to patches fθ (z) = P′. The reconstruction loss for patches Lθ ,φ(P) is implemented

as Lθ ,φ(P) = argmaxθ ,φ

�

Ez∼qφ(.|P)

�

∥P−P′∥2

2c

�

− DKL(qφ(. | P) ∥ p(.))
�

. The parameters are
learned end-to-end.

In our evaluation, the proposed approach identified the same bad map cells compared
to a baseline map quality assessment tool that required labelled map patches to train a
classifier. The primary advantage of our method is that it requires no labels or ground truth,
which can be difficult or infeasible to obtain. Additionally, the method was successful
when assessing maps with various sources of error from environments not encountered
during training.

Example output is shown in Figure 16, for an occupancy grid map from the same
warehouse environment as shown in Figure 14.

The unsupervised and reference-free map quality assessment tool that was described
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Figure 16: Warehouse grid map (left) and grid map with bad cells highlighted by our reference-
free map quality assessment method (right). In this example, the method mostly highlights
clutter and sparsely covered regions as bad.

in D3.2 has also been demonstrated at the Milestone 3 demo and stakeholder meeting.
We are preparing a journal manuscript describing the technical details and experimental
outcomes in more detail.

6 Summary

This report describes the components included in the DARKO mapping system as of Month
48 (December 2024). Efficient mapping has been implemented initially using the 3D-
NDT map representation (which allows accurate localization using a sparse grid of 3D
Gaussians, compared to dense octrees or point cloud maps) and further on by exploring
efficient representations for neural surface reconstruction (Section 2.2) and improved
rendering quality of 3D Gaussian splatted maps (Section 2.3). Our work on maps of
dynamics includes an efficient online version of the CLiFF representation (Section 4.2)
as well as long-term human motion prediction with CLiFF (Section 4.3) and the novel
LaCE representation (Section 4.4). Reliability-aware mapping and safe localization has
been addressed through self-supervised registration quality assessment (Section 5.1),
dynamics- and alignability-aware localization risk maps, including a Bayesian model for
risk assessment (Section 5.2), and a variational autoencoder for reference-free 2D map
quality assessment (Section 5.3).
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